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ABSTRACT
Large Language Models (LLMs) are revolutionizing the landscape
of Artificial Intelligence (AI) due to recent technological break-
throughs. Their remarkable success in aiding various Software
Engineering (SE) tasks through AI-powered tools and assistants
has led to the integration of LLMs as active contributors within de-
velopment teams, ushering in novel modes of communication and
collaboration. However, great power comes with great responsibil-
ity: ensuring that these models meet fundamental ethical principles
such as fairness is still an open challenge. In this light, our vi-
sion paper analyzes the existing body of knowledge to propose a
conceptual model designed to frame ethical, social, and cultural
considerations that researchers and practitioners should consider
when defining, employing, and validating LLM-based approaches
for software engineering tasks.
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1 INTRODUCTION
Large Language Models (LLMs), advanced models designed to
comprehend and produce language similarly to human speech based
on the provided input, profoundly influence individuals’ daily rou-
tines, including professionals such as software engineers. These
models, recognized for their substantial size and intricacy, fre-
quently encompass millions or billions of acquired details derived
from extensive text data throughout the training process. [1–3].

In the Software Engineering (SE) field, the most evidence of
this relies on the birth of GitHub’s CoPilot in 20211, where AI finds
1GitHub Copilot is an AI-powered code completion tool developed by GitHub in
collaboration with OpenAI. It’s designed to assist developers by providing context-
aware code suggestions as they write code. Available at: https://github.com/features/
copilot
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practical applications in supporting SE tasks. It revolutionized the
approach of software engineers to their work. [4]. Following this
development, the research community began exploring the integra-
tion of LLMs into applications designed to enhance the daily tasks
of developers, such as code generation [5, 6]. These experiments
highlighted the possibility of introducing AI-poweredmembers into
the collaborative landscape [7, 8]. While recognizing their impres-
sive potential, researchers and practitioners in SE approached the
integration with a degree of skepticism [9]. This reserved stance
reflected a careful consideration of the possible implications of
incorporating LLMs into established practices within the field.

Indeed, all that glitters is not gold. LLMs are usually trained on
uncured and unprocessed sources of existing data. As a reflection
of our history, such data inherits both good and bad aspects and
knowledge of humans. Thus, potential social biases in language
models could derive from the training data gathered from human
societies. Many incidents occurred—e.g., Facebook vision model
that put the "primate" label to black men, Amazon assigning lower
sales ranking to books containing gay themes, and racism and
sexism during authentication processes [10]—and they all stress
the urge to develop ethical AI.

Recent works explored causes and possible solutions to biases
and unjust decisions of machine learning models. From a techni-
cal point of view, researchers proposed algorithmic solutions to
achieve fairness [11]. In decision-making, fairness is the absence of
prejudice or favoritism toward an individual or group based on their
inherent or acquired characteristics [12–14]. Moreover, standards
and processes have been defined for building ethical solutions in
traditional systems, known as Value-based Engineering [15].

On the one hand, the data sources carry harmful information
that mirrors biases, causing ML-based applications to internalize
stereotypical behaviors [13]. Conversely, the imbalanced labeling of
various demographic and protected groups introduces distributional
disparities. This imbalance can result in unjust predictions when
a model, trained under the homogeneity assumption, is applied to
real-world inputs [16]. Furthermore, being developed by humans,
even worse biases could be introduced by developers.

On the other hand, threats of introducing LLMs in the daily
life of a software engineer have consistently been underestimated.
Creating software is inherently a social activity, and how devel-
opers communicate impacts the project’s success. Good or bad
communication and collaboration patterns among team members
have been widely investigated in the software engineering research
area. Tamburri et al. defined community smells, i.e., a set of sub-
optimal socio-technical characteristics and patterns in software
development teams [17]. Unfortunately, the introduction of LLMs
in developers’ social activities has not yet been investigated.
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Based on all the above considerations and concerns, the goal
of our vision is to highlight the necessity of considering Social
Awareness in the future of Large Language Models in the Software
Engineering scenario. Our conceptual exercise aims to integrate
technical and socio-technical factors into a unified framework. Re-
searchers and practitioners can leverage this framework to enhance
the design of future Large LanguageModel (LLM)-based approaches
for Software Engineering (SE) tasks, exploring their interactions
with users in real-world environments.

2 BACKGROUND AND MOTIVATION
We define Large Language Models (LLMs) as a machine learning
model designed to understand and generate human-like language.
They fall under the Foundation Models (FMs) umbrella, i.e., a ma-
chine learning (ML) model pre-trained to perform various tasks.
While LLM and FM are often used interchangeably, it is essential
to point out that a Foundation Model is a broader concept. The
former focuses on natural language tasks, so it is primarily used
in software engineering scenarios. The latter, instead, can support
various modalities, e.g., videos.

Although Generative Pre-trained Transformer (GPT) by OpenAI
[18] is now the most popular LLM, the first step toward the defi-
nition of such models was made by Google in 2018. In particular,
they introduced BERT (Bidirectional Encoder Representations from
Transformers), a model pre-trained on vast datasets [3].

Following BERT, research on LLMs has overtaken the AI commu-
nity, leading to the development of new solutions spread in many
different contexts. The forefront of this trend is the Generative Pre-
trained Transformer (GPT) by OpenAI, with its most recent update
in GPT-4 [18], often used by SE researchers and practitioners in
their daily tasks.

For example, Hou et al. [8] conducted a systematic literature
review, uncovering 55 SE tasks that professionals automate us-
ing Language Model Models (LLMs). Furthermore, they explored
various studies offering insights into using LLMs for software de-
velopment, highlighting 21 tasks, e.g., code search.

Belzner et al. [7] envisioning the paradigm“LLM-assisted soft-
ware engineering”. This approach advocates for collaborative part-
nerships between LLMs and developers throughout all stages of
development. In this model, LLMs act as development experts, and
developers serve as domain experts, jointly contributing to require-
ments, software design, and code evaluation [7].

While previous studies emphasized the support provided by
LLMs in daily tasks, researchers at the Center from Research on
Foundation Models (CRFM)2 identified opportunities and risks as-
sociated with applying these models in various fields. They partic-
ularly stressed the societal aspects, urging for responsible develop-
ment and deployment. Despite the inherent complexity, the authors
asserted that achieving fairness and ethics is feasible, encouraging
researchers to strive for these goals [19].

To tackle such concerns, researchers have shifted their focus
to specific unethical behaviors exhibited by LLMs. Wan et al. [20]
proposed an automated framework to measure social bias in AI-
based conversational assistants. Also, recent research has brought
attention to tackling the problem of gender bias in LLMs. On the one

2https://crfm.stanford.edu/

side, Kotek et al. [21] tested LLMs to evaluate the fairness of their
responses related to gender-related aspects. Their findings revealed
biased assumptions concerning men and women, influenced by
subjective opinions rather than factual evidence. Additionally, the
study delved into the justifications provided by the models for their
decisions, highlighting the importance of rigorous testing before
their release. On the other side, Truede et al. [22] found notable
gender bias in software development tasks like issue assignment,
highlighting the need for improved training in LLMs.

The study’s results above underscored the necessity for guide-
lines in using or developing LLMs. Spiekermann et al. [15] for-
mulated rules and considerations for ethically designed solutions.
They introduced the concept of Value-based Engineering for ethics
by design, emphasizing ethical and moral values in software sys-
tem design. This concept aligns with the IEEE P7000 standard3,
defining Value-based Engineering to address ethical issues across
the software life cycle. However, this work primarily focuses on
traditional systems, leaving a huge gap that needs addressing for AI
and LLM-based applications. Concerning AI-based systems, Lu et
al. [23] proposed a roadmap for Software Engineering for Responsi-
ble AI. The authors focus on enhancing responsible AI application
development through multi-level governance establishment, inte-
gration of process-oriented best practices, and implementation of
responsible-AI-by-design principles into system-level architectural
styles, patterns, and techniques. Moreover, they presented several
challenges that need to be addressed for ML systems, and they
serve as a starting point for our reflections in the context of more
complex ML-based systems.

Motivation. Considering the background information outlined
above, our vision’s motivation leverages the gaps and issues iden-
tified. Due to their socio-technical nature, LLMs are transforming
SE, with AI-based assistants becoming essential contributors to
development communities. Unfortunately, being trained on histor-
ical data, they inherit the bad and the good parts of our history,
highlighting the urge to work toward defining ethical and moral
solutions when using and developing them. As part of a social en-
vironment, we must consider their awareness of other individuals
when designing and using such applications.

3 SOCIAL AWARENESS: A VISION
LLMs are socio-technical by nature: their applications, such as Chat-
GPT or CoPilot, aim to collaborate with users and support them
in their tasks, being active actors in their activities and becoming
community members. Communities’ issues could easily lead to the
failure of a project [24]. As LLM-based assistants play an increas-
ingly functional role in the daily activities of software engineers,
there is a need to regulate their social and ethical behaviors, thereby
introducing the concept of social awareness in LLMs.

Social Awareness in Large Language Models

The understanding and consideration of ethical, social, and
cultural factors in the development and use of Large Language
Models by those who develop and use them.

3https://standards.ieee.org/ieee/7000/6781/
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Figure 1: Overview of our Vision of Social Awareness in Large Language Models

The following sections will further detail our vision in its fun-
damental parts, which are also summarized in Figure 1. Building
on the concept introduced by Belzner et al. [7], we illustrate collab-
orative partnerships between development teams and LLM-based
assistants as integral components of the environment. In light of
this scenario, we aim to highlight specific concerns and challenges.

We build on top of existing literature [15, 19, 21, 22] in differ-
ent contexts to define two distinct catalogs of practices and
challenges to apply as software engineers when designing or us-
ing LLM-based applications, namely Vertical and Horizontal Social
Awareness. The former should be seen from the developers’ perspec-
tive, who should take technical and moral steps toward designing
ethical solutions. The latter should be seen from the perspective
of the same developers but in their use and application of such
systems, considering ethical and social concerns in their activities.

3.1 Vertical Social Awareness
LLMs simulate human language interactions, attaining performance
through training on large datasets and fine-tuning for specialized
tasks. Advances in deep learning and AI techniques like trans-
formers, attention mechanisms [25], transfer learning [26], and
continuous learning [27] make these processes possible. Unfortu-
nately, these tasks are often labor-intensive, prone to mistakes, and,
of all the errors, the least palpable yet most troublesome relate
to ethics, fairness, and privacy. Ensuring that systems align with
ethical principles, such as those outlined in the European Artificial

Intelligence Act4, and avoiding discrimination against vulnerable
groups poses a complex challenge for developers.

In light of all the challenges outlined, we propose a set of consid-
erations that software engineers should analyze when developing
LLM-based applications.

Fairness. Although explored and studied in artificial intelligence
and software engineering, achieving fairness is still an open chal-
lenge [12]. However, when considering big and complex systems
like LLMs, the challenge is even more complicated, as shown by
works that analyzed particular bias issues, i.e., gender [21, 22].
Given their potential impact on critical areas, e.g., e-health, loan
assignment, or hiring decisions, tasks performed by LLM-based
assistants in software engineering demand heightened attention
to avoid the potential harm of unfair solutions. LLMs are typically
trained on general data and fine-tuned on specific tasks using spe-
cific datasets. Consequently, fairness solutions in this context must
consider various characteristics intrinsic to the field of application.

Privacy. As LLMs extensively train on diverse data sources,
they can recall much of the information used during training or
fine-tuning. However, this data is not necessarily intended for re-
production as it often contains private information. Therefore, it
is crucial to consider privacy-preserving solutions and techniques
[28], including approaches like Differential Privacy Decoding pro-
posed by Mujmudar et al. [29]. Established privacy techniques from
4The AI Act is a proposed European law on artificial intelligence (AI). The law catego-
rizes AI applications into three risk levels. Available at: https://artificialintelligenceact.
eu/
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the machine learning field, such as cryptography [30], should be
tested and evaluated. We advocate for multidisciplinary approaches,
combining software engineering and security considerations, to
effectively address privacy issues in LLM-based applications.

Ethics by Design. Considering the Value-based Engineering for
Ethics By Design framework proposed for the software engineering
area [15], together with the IEEE P7000 standard, we suggest that
researchers should work toward the definition of specific practices
for the development of LLMs and LLM-based systems. The frame-
work proposed involves two main phases: Ethical Exploration and
Ethically Aligned Design. The former encompasses processes like
value elicitation, prioritization, and identification of ethical value
quality. The latter focuses on integrating these values into both
technical and organizational aspects of system design, employing
iterative and risk assessment-based approaches to address values
at risk in system architecture and design. Defining specific rules
for LLM-based applications is crucial due to their unique socio-
technical nature and the concerns surrounding their training data.
These applications, which serve as constant user assistants and
interact closely with developers, require careful consideration of
various ethical concerns and values throughout the design process.

3.2 Horizontal Social Awareness
LLM-assisted software engineering envisions collaborations be-
tween software engineers and LLM-based assistants throughout all
stages of software development [7]. AI becomes an integral part of
the working environment in this new paradigm, supporting devel-
opers in their daily tasks, much like a colleague. However, playing
such a crucial role comes with responsibilities. Beyond mastering
the art of building fair LLMs, there is a need to learn how to use
them, considering ethical, social, and cultural factors. Building upon
the reflections in this paper, we propose a set of aspects that should
be further explored concerning the interaction with LLMs.

Fair Prompt Engineering. Prompt engineering generally refers
to the practice of carefully crafting or designing prompts to obtain
desired responses from language models or other artificial intel-
ligence systems. Indeed, correctly prompting LLMs is critical to
gathering valuable resources, making this aspect central when con-
sidering the social activities in software development teams that
include LLM-based assistants. When implemented, which is the
case for the most famous LLMs, continuous learning [27] can use
these prompts to keep training and improve the model’s perfor-
mances, getting better and better as the assistant gets asked for help.
To avoid future discrimination or biases from models, we should
carefully evaluate what we ask and how we do it. For instance,
providing sensitive data could end up creating a privacy issue.
Moreover, properly communicating with LLMs—fair prompts— will
also lead to obtaining more socially aware answers. Thus, we sug-
gest researchers and practitioners start understanding the function
of prompt engineering in the context of ethical and social concerns.

Reevaluating Community Smells. As mentioned at the para-
graph’s outset, treating LMMs as integral team members prompts
the exploration of their interactions when communicating or collab-
orating with human team members, including potential associated
issues. Being trained on open-source data, issues like toxicity [31]

could be inherited, possibly leading to unhealthy working envi-
ronments. In this context, the concept of Community Smells [32]—
suboptimal communication and collaboration patterns in software
development communities, known to contribute to social debt—
may warrant reevaluation. Literature on community smells [33]
identifies patterns related to team member interactions, expecta-
tions, and perceptions of others’ work, making them pertinent for
reconsidering AI-human collaborations. For example, the Cognitive
Distance smell, which refers to the distance that peers perceive on
the cultural, physical, social, or technical level, is mainly caused by
the experience diversity [17]. However, how do developers perceive
such a difference with LLMs? Not trusting team members’ solutions
may cause the Dissensus smell, i.e., the inability to achieve con-
sensus on solutions and being unable to proceed with the project
[34]. Would this happen with LLM assistants as team members? The
immediacy of solutions provided by assistants could result in a
Disengagement smell [17], i.e., loss of engagement and curiosity by
team members. Given such considerations, we suggest researchers
start working toward understanding social patterns in teams that
include LLMs.

4 CONCLUSION
This paper reports our vision of the future of Large Language Mod-
els in Software Engineering, specifically focusing on social and
ethical aspects. We introduced the concept of Social Awareness for
LLMs, i.e., the understanding and consideration of ethical, social,
and cultural factors in the development and use of LLMs by those
who develop and use them. Furthermore, we proposed two critical
aspects: (1) vertical and (2) horizontal social awareness. The former
suggests that developers and researchers pay attention to ethical
and privacy concerns in the design and development of LLMs, high-
lighting the necessity of processes and rules to grant ethics by
design. The latter focuses on the social and ethical consequences
of introducing LLM-based assistants in collaborative scenarios like
software engineering.

With this vision, we hope practitioners and researchers reeval-
uate the following three key aspects. Firstly, the definition and
implementation of LLM-based approaches should consider social
awareness in their design. Secondly, communication and collabora-
tion patterns should be adapted to a new scenario involving LLMs
as active software engineering community members. Finally, from
the researchers’ perspective in Software Engineering for Artificial
Intelligence, evaluating such approaches needs reconsideration,
focusing on analyzing the validity considering social awareness.
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